
Relations between Customer Requirements,
Performance Measures, and General

Case Properties for Case Base Maintenance

Ioannis Iglezakis and Thomas Reinartz

DaimlerChrysler AG, Research & Technology, RIC/AM,
P.O. Box 2360, 89013 Ulm, Germany

ioannis.iglezakis@daimlerchrysler.com
thomas.reinartz@daimlerchrysler.com

Abstract. The ultimate goal of CBR applications is to satisfy customers using
this technology in their daily business. As one of the crucial issues in CBR for
practical applications, maintenance is important to cope with demands changing
over time. Review and restore are the two steps in CBR that deal with tasks of
maintenance. In order to perform these tasks, we suggested case and case base
properties, quality criteria, and restore operators in earlier publications. In this
paper, we specify concrete performance measures that correspond to general cus-
tomer requirements, and analyze the relations between these performance crite-
ria, case properties, and restore operators. We present initial results on theoretical
analyzes on these relations, and report on examples of experimental studies that
indicate that the suggested case properties and the respective restore operators
help to identify maintenance strategies in order to optimize performance of CBR
systems over time.

1 Introduction

In earlier publications, we established review and restore as two additional steps that
enhance the 4–RE CBR process consisting of retrieve, reuse, revise, and retain [1]. The
review step checks the CBR system quality and tests if this quality still meets desired
quality criteria, whereas the restore step uses different operators to modify the system
to get back to a desired level of quality.

The review step consists of three different tasks. First, theassesstask evaluates
the quality of one of the knowledge containers of a CBR system. Second, themonitor
task displays or visualizes the results of the assess task and, for example, compares the
assessment outcome with thresholds. At the end of the review step, it is the goal of the
notify task to initiate actions on the results of the monitor task.

The restore step again consists of three tasks. First, thesuggesttask computes po-
tential restore operations that are able to modify the affected knowledge container in
order to get back to the desired level of quality. Second, theselecttask ranks the sug-
gested restore operations according to some pre–defined preference criterion. Finally,
the goal of themodifytask is the execution of the selected restore operations.

In previous papers, we defined case and case base properties to detect conflicts be-
tween cases and quality measures to assess the quality of the case base, and specified

mailto:ioannis.iglezakis@daimlerchrysler.com
mailto:thomas.reinartz@daimlerchrysler.com

several restore operations for the case base along with initial heuristics for their ap-
plication [4,5]. In this paper, we follow up these ideas for case base maintenance and
enhance the previous concepts in several ways.

First, we define performance measures for using a CBR system that reflect customer
requirements in practical applications. Second, we generalize the case properties to
similarity–based properties that no longer rely on specific similarity measures but allow
any similarity measure. We will then show how customer requirements, performance
criteria, and case properties relate to each other in the context of case base maintenance.
Therefore, we present some theoretical results as well as examples for experimental
studies that indicate the correctness of the theoretical analyzes.

2 Customer Requirements

Assume typical customers of a help–desk for IT support. They call help–desk agents
when they come along a problem with their computer system which they are not able
to solve by themselves.1 Then, the customer describes the problem, and the help–desk
agent normally asks additional questions to get a clearer picture of the problem. As soon
as the problem is concrete enough, the help–desk agent aims at supporting the customer
with a solution, often by remembering similar situations with similar problems.

In terms of case–based reasoning, such a scenario is a typical diagnosis application.
The customer problem forms the problem component of a query to the CBR engine.
The problem description together with answers to additional questions construct symp-
toms of the problem definition, often in terms of an attribute–value representation. And
finally, the overall solution of the problem corresponds to the solution component of a
new case, or matches the solution component of an existing case in the case base (or an
adaptation thereof).

In those and similar scenarios, customer requirements are relatively clear:

1. Customers want an answer to their problem at all.
If customers ask a query to some support or a CBR system, either directly or indi-
rectly, they expect an answer. If customers do not get an answer to their query, they
get an impression of incompetence, either of the support or of the CBR system.

2. Customers want correct answers to their problem.
Obviously, customers are additionally interested in getting a correct answer. It is
possibly not necessary to provide the best correct answer, but it is essential to offer
a correct answer.

3. Customers want fast answers to their problems.
Customers with problems are impatient; they want solutions fast. Although, for
example, in case of help–desks, there usually exists a complex management for
priorities of problems, customers perceive their own problem as the most important
and urgent problem.

4. Customers want confident answers to their problems.
In addition to correct and fast answers, customers often expect that the support has
a specific confidence. They do not want to try out many solutions until they really

1 For the moment, we ignore that it is possible to contact modern help–desk organizations in
multiple ways beyond telephone calls.

get the right answer to their original problem, but insist on that the first solution
is already the correct one. Alternatively, if the support is not able to provide a
correct solution, customers want to be confident that the support is in no doubt of
its decisions.

Unfortunately, these general customer requirements refer to criteria that we are only
able to measure if we really use the CBR system in practice. It is hardly possible to esti-
mate the quality of the CBR system according to these requirements by simply looking
at the different knowledge containers. Hence, we are looking for a way firstly to measure
some criteria that reflect these customer requirements, and then secondly to estimate the
values of these criteria before really using the system in practice. For the first purpose,
we now specify concrete measurable performance criteria; and for the second need, we
identify relations between performance and case properties.

3 Case Representation and Similarity Measure

Before we start with the definition of performance measures, we specify the case rep-
resentation as well as the similarity measure which we use subsequently. These defini-
tions follow up the representation which we have defined in previous publications. For
a detailed discussion, we refer to [5].

Definition 1 (Cases and Case Base).

a) An attributeaj is a name accompanied by a setVj := {vj1, . . ., vjk, . . ., vjNj} of
values. We denote the set of attributes asA := {a1, . . ., aj , . . ., aN}.

b) A problem is a setpi := {pi1, . . . , pij′ , . . . , piNi} with ∀j′ ∈ [1;Ni] ∃aj ∈ A and
∃vjk ∈ Vj : pij′ = vjk, and∀j ∈ [1;N] : |(pi ∩ Vj)| ≤ 1. We denote the set of
problems asP := {p1, . . . , pi, . . . , pM}.

c) A solutionsi is any item.
d) A case is a tupleci := (pi, si) with a problempi and a solutionsi. A case base is

a set of casesC := {c1, . . . , ci, . . . , cM}.
e) We further assume a separation ofC into a training setT and a test set (or query

set)Q with C = T ∪Q andT ∩Q = ∅.
The auxiliary functions in definition2 count coincidence and difference between

values of two problem definitions, e.g., of a case and a query.S↔ is the number of values
for the same attribute with local similarity1. For example, for symbolic attributes, this
number equals the number of identical values; for numeric attributes, this is the number
of values with only small differences, e.g., in comparison to a pre–defined threshold
ε. S! is the contrary function and corresponds to the number of unequal or more
discriminant values.S← andS→ count the number of values for attributes that occur
in the case but not in the query, and vice versa, respectively. Finally,S− depicts the
amount of information that is missing in both problem definitions, i.e., it counts the
number of attributes without values, neither in the case nor in the query.

Definition 2 (Auxiliary Functions). Assume a local similarity measuresimj : Vj ×
Vj 7→ [0; 1].

a) S↔ : P × P 7→ {1..N},
S↔(pi, pi′) :=

∣∣{j ∈ {1..N} : |pi ∩ Vj | = |pi′ ∩ Vj | = 1 ∧ simj(pij , pi′j) = 1}∣∣
b) S! : P × P 7→ {1..N},

S!(pi, pi′) :=
∣∣{j ∈ {1..N} : |pi∩Vj | = |pi′ ∩Vj | = 1 ∧ simj(pij , pi′j) 6= 1}∣∣

c) S← : P × P 7→ {1..N},
S←(pi, pi′) :=

∣∣{j ∈ {1..N} : |pi ∩ Vj | > |pi′ ∩ Vj |}
∣∣

d) S→ : P × P 7→ {1..N},
S→(pi, pi′) :=

∣∣{j ∈ {1..N} : |pi ∩ Vj | < |pi′ ∩ Vj |}
∣∣

e) S− : P × P 7→ {1..N},
S−(pi, pi′) :=

∣∣{j ∈ {1..N} : |pi ∩ Vj | = |pi′ ∩ Vj | = 0}
∣∣

We use the auxiliary functions for two different purposes. First, we define the overall
similarity measure by a weighted cumulation of these auxiliary values, and second we
use them to specify the general case properties later.

The overall similarity in definition3 is the normalized weighted sum of above
auxiliary values. We definitely consider values that coincide for the same attribute
(S↔(pi, pi′)) as positive. Different values (S!(pi, pi′)) instead do not contribute pos-
itive local similarity values and is therefore not considered. For all of the other values
(S←(pi, pi′), S→(pi, pi′), andS−(pi, pi′)), weightsw←, w→, andw− decide whether
we consider their relations as positive (w = 1) or negative (w = 0).

Definition 3 (Similarity Measure). Assumew←, w→, w− ∈ {0, 1}.
sim : P × P 7→ [0; 1],

sim(pi, pi′) := N−1 ·
(

S↔(pi, pi′) + w← · S←(pi, pi′)

+ w→ · S→(pi, pi′) + w− · S−(pi, pi′)
)

.

For example, if we supposew← = 0 andw→ = 1, we implement the following
strategy for unknown values. Assumepi is a problem component of a case whereaspi′

is a problem component of a query. If a case specifies a value which is not part of the
query, we assume that the known problem is more specific than the query. We either
have a more general new problem or we have not yet tested the respective missing
symptom for the query. In both cases, we do not increment the overall similarity. In
contrast, if a case does not specify a value which is part of the query, we assume that the
known problem is more general and hence covers all problems which are more specific.
In these situations, we increment the overall similarity. If both values are unknown,w−
decides whether we count this coincidence as a positive or negative aspect of similarity.

4 Performance Measures

The previously described customer requirements reflect expectations of customers us-
ing a CBR system in any practical setting. For the following more precise considera-
tions, we focus on diagnosis as the broad range of applications. We define four different
performance measures that correspond to the customer requirements as we will discuss
thereafter.

4.1 Coverage

The first performance measure is coverage. A set of cases covers a (query) case if and
only if there exists a case within the set of cases that is at least as similar to the (query)
case as a pre–defined similarity thresholdτ . This similarity thresholdτ corresponds to
the minimum required similarity that CBR systems use to decide whether to suggest
the solution of the most similar case as the solution of a query or not. For example,
using a similarity threshold of0.5 with a simple similarity measure basically counting
matching values, this definition of coverage requires that at least half of the values of a
case match the values of a query until we accept that this case covers this query.

Definition 4 (Coverage).Assumeq = (qp, qs) ∈ Q, t = (tp, ts) ∈ T , T ′ ⊆ T , and
τ > 0.2

a) T ′ coversq :⇐⇒ ∃t ∈ T ′ : sim(tp, qp) ≥ τ .
b) T ′ correctly coversq :⇐⇒ ∃t ∈ T ′ : sim(tp, qp) ≥ τ ∧ ts = qs.3

c) Thecoverage setof T ′ is V (T ′) := {q ∈ Q : T ′ coversq}.
d) Thecorrect (or positive) coverage setof T ′ is V +(T ′) := {q ∈ Q : T ′ correctly

coversq}.
e) Thecoverageof T ′ is PV (T ′) := |Q|−1 · |V (T ′)|.
f) Thecorrect (or positive) coverageof T ′ is P+

V (T ′) := |Q|−1 · |V +(T ′)|.
Pure coverage only requires a case with sufficient similarity; it does not necessarily

expect that this case is also able to correctly classify the respective query. For the latter
situation, we also define a notion of correct (or positive) coverage (see definition4). For
further discussions and specifications, we also define the coverage set of a set of cases
and its correct (or positive) pendant. The (correct or positive) coverage as a performance
measure is then the relative number of (correctly) covered cases inQ.

4.2 Accuracy

Accuracy is probably the most prominent performance measure that many researchers
use to evaluate their approaches. Accuracy (or classification accuracy) counts the num-
ber of correct solutions of a CBR system using a case base to solve a set of queries. In
classification domains, this number of solutions is compatible to the number of correct
classifications.

First, we define when a case (correctly) classifies a query, namely, when this case
is the most similar case in the case base in comparison to the query (and the solution
components coincide). Furthermore, we specify the (correct or positive) classification
set of a case (see definition5). The accuracy is then the relative number of correctly
classified cases inQ.

2 qp andtp are the problem components ofq andt, andqs andts are the solution components
of q andt, respectively. If it is clear that we meanqp or tp rather thanqs or ts, we also useq
andt instead of the more detailed notationqp andtp.

3 Note, in real applications we do not know whetherts = qs in advance. However, for exper-
imental purposes, we assume a separated original case base into training and test cases (see
above) such that we know the solution of queries beforehand.

Definition 5 (Accuracy). Assumeq = (qp, qs) ∈ Q, t = (tp, ts), t′ = (t′p, t
′
s) ∈ T ,

andT ′ ⊆ T .

a) t ∈ T classifiesq ⇐⇒ @t′ ∈ T, t 6= t′ : sim(t′p, qp) > sim(tp, qp).4

b) t ∈ T correctly classifiesq ⇐⇒ t classifiesq ∧ ts = qs.
c) T ′ (correctly) classifiesq ⇐⇒ ∃t ∈ T ′ : t (correctly) classifiesq.
d) Theclassification setof T ′ is A(T ′) := {q ∈ Q : ∃t′ ∈ T ′ : t′ classifiesq}.
e) Thecorrect (or positive) classification setofT ′ isA+(T ′) := {q ∈ Q : ∃t′ ∈ T ′ : t′

correctly classifiesq}.
f) The accuracy ofT ′ is P+

A (T ′) := |Q|−1 · |A+(T ′)|.

Note, the crucial difference between coverage and accuracy is the desired minimum
similarity τ and the relation between solutions of cases and queries. For pure coverage,
we demand a minimum similarityτ between cases and queries but do not state any
constraints on solutions. For accuracy, we count any correct solution of the most similar
case in comparison to a query regardless the exact value of similarity. Hence, coverage
is stronger in a sense that it requires a minimum similarity but accuracy is stronger in a
sense that it expects correct solutions.

4.3 Retrieval Time and Storage Space

The retrieval time and exact storage space that is needed to cope with the case base
depends on the machine used for retrieval and the number of cases in the case base.
Since we are not able to change machine characteristics by maintenance, we identify
retrieval time with storage space which in turn corresponds to the number of cases
for simplicity. Consequently, the respective performance measurePT only counts the
number of cases in the case base.

Definition 6 (Retrieval Time and Storage Space).
Theretrieval timeandstorage space(indicator) ofT is PT (T) := |T |.

4.4 Confidence

Finally, the confidence of a CBR system in its decisions is a fourth performance mea-
sure. Thereby, we presume that observed similarities are appropriate as an indication of
confidence. The higher the similarity of a case that classifies a query in comparison to
the query is, the more confident we assume the CBR system is in its decision.

Definition 7 (Confidence).AssumeT ′ ⊆ T , t∗q ∈ T ′ is thecase that classifiesq ∈ Q,
andsim+(t∗q , q) := sim(t∗q , q) if t∗q correctly classifiesq as well assim+(t∗q , q) := 0
if t∗q does not correctly classifyq.

a) The(average) confidenceof T ′ (onQ) is PC(T) := |Q|−1 ·∑q∈Q sim(t∗q , q).
5

4 In case of ties, i.e., two different cases have the same highest similarity in comparison to the
query, we assume some order onT such thatthecase which classifiesq ∈ Q is always unique.

5 We assume thatT always classifies anyq ∈ Q.

b) The(average) correct (or positive) confidenceof T ′ (on Q) is P+
C (T) := |Q|−1 ·∑

q∈Q sim+(t∗q , q).

Since we are barely interested in confidence of single decisions, we average confi-
dence over all classifying cases and queries. For regular confidence, we count all sim-
ilarities between classifying cases and the respective queries, whereas correct (or pos-
itive) confidence only takes into account similarities between cases and queries with
correct classifications. Hence, we are able to distinguish between the average confi-
dence of a CBR system in general, and the average confidence in its correct decisions.
The related average wrong (or negative) confidence is simply the difference between
average confidence and average correct (or positive) confidence.

4.5 Related Performance Measures

The most closely related work on similar performance measures is the research by
Smyth and colleagues [7]. They define the local competence contribution of individual
cases by two sets, the coverage set and the reachability set. The coverage set of a (train-
ing) case is the set of (query) cases that this case is able to solve, whereas the reacha-
bility set of a (query) case corresponds to the set of cases which are able to solve it. For
both sets, Smyth and colleagues use a notion of ’solves’. If we assume that ’solves’, for
example, means in terms of our terminologysi = si′ for a caseci = (pi, si) and a (test)
queryci′ = (pi′ , si′), and we additionally require that case and query have at least a
similarity to each other ofτ , then their coverage set definition is the same asV +({ci})
in terms of our concepts.

The correct (or positive) classification set here is also comparable to the coverage
set by Smyth et al. However, a classification set only considers queries that were really
classified by a case rather than cumulating all cases that were potentially able to cor-
rectly classify the query. At the moment, we do not have any corresponding concept to
Smyth et al.’s reachability set but it is easily possible to extend our definitions along
these ideas and specify comparable sets as soon as we encounter a concrete need for
them.

If we compare the definitions here and those of Smyth and colleagues, we observe
that their notion of ’solves’ is more general than the definitions for coverage and classi-
fication sets here, but on the other hand coverage, accuracy, and, especially, confidence
cover more general aspects of performance than Symth et al.’s concepts do. Further-
more, their resulting maintenance strategies directly refer to their competence models
whereas we only use these concepts to indirectly measure performance but rely on case
and case base properties for maintenance purposes.

For more discussion of related work, we refer to earlier publications on case and
case base properties (e.g., see [4,5]) and discussions in directly related papers (e.g., see
discussions of related work in [6] and [7]).

5 General Case Properties

In previous work, we defined several case properties and used them to specify different
quality measures [4]. These properties and measures were based on a simple similarity

Table 1.Examples for Pairs of Cases with Conflicts with respect to General Case Prop-
erties

pi si pi′ si′ conflict S↔ S! S← S→ S− ∆

1 v11 v21 v31 s1 v11 v21 s2 ¬ sim–consistent 2 0 1 0 2 –
2 v11 v21 v31 s1 v11 v21 v31 s1 ¬ sim–unique 3 0 0 0 2 –
3 v11 v21 v31 s1 v11 v21 s1 ¬ sim–minimal 2 0 1 0 2 –
4 v11 v21 v31 v41 s1 v11 v21 v42 v51 s1 ¬ sim–incoherent2 2 1 1 1 0 2

measure that only compares coincidence between values, i.e., local similarities yield1
if two values of two cases (or a case and a query) for the same attribute are identical
and0 if they are not the same. The set–oriented notation for problems and solutions,
which comprise cases, enabled definitions of properties and measures that mainly used
set operations to compute the necessitated conditions and relations.

By now, we generalized these concepts and generated new definitions of general
case properties and resulting quality measures that only use the general concept of a
similarity measure rather than assuming a specific instantiation of such a measure. In
this section, we cite these more general definitions which in their nature are comparable
to the previous specifications. The original simple properties and measures are special-
izations of the general ones presented here. For detailed explanations of case properties
and quality measures, we refer to [5].

Definition 8 (General Case Properties).AssumeG ⊆ C, ci ∈ G, and1 ≤ ∆ ∈ N.

a) ci sim–consistent withinG :⇐⇒ @ci′ ∈ G : si 6= si′ ∧ S↔(pi, pi′) +
S←(pi, pi′) = Ni ≥ Ni′ ∧ S↔(pi, pi′) > 0 ∧ S←(pi, pi′) ≥ 0 ∧ S→(pi, pi′) =
0.

b) ci sim–unique withinG :⇐⇒ @ci′ ∈ G, ci′ 6= ci : si = si′ ∧ S↔(pi, pi′) =
Ni = Ni′ ∧ S↔(pi, pi′) > 0.

c) ci sim–minimal withinG :⇐⇒ @ci′ ∈ G : si = si′ ∧ S↔(pi, pi′)+S←(pi, pi′) =
Ni > Ni′ ∧ S↔(pi, pi′) > 0 ∧ S←(pi, pi′) > 0 ∧ S→(pi, pi′) = 0.

d) ci sim–incoherent∆ within G :⇐⇒ @ci′ ∈ G : si = si′ ∧ S↔(pi, pi′) +
S!(pi, pi′) + S←(pi, pi′) = Ni = Ni′ ∧ S↔(pi, pi′) > 0 ∧ S!(pi, pi′) ≥
0 ∧ S←(pi, pi′) ≥ 0 ∧ S→(pi, pi′) ≥ 0 ∧ S←(pi, pi′) = S→(pi, pi′) ∧
S!(pi, pi′) + S←(pi, pi′) = ∆.

Table1 shows examples of pairs of cases, their conflict to each other, and the result-
ing values for the auxiliary functions in definition2.

6 On Relations between Customer Requirements, Performance
Measures, and General Case Properties

The ultimate goal in any CBR application is to fulfill customer expectations. In sec-
tion 2, we briefly characterized the probably most important customer requirements.
However, these requirements and the corresponding performance measures rely on true

performance of the system, and an ad–hoc estimation of the degree of fulfillment of
the requirements by a CBR system is not possible without using the CBR system in
practice.

In this section, we first show how customer requirements, performance measures,
and case properties relate to each other, and then argue that we are able to use case prop-
erties as early indicators for later performance, and hence for the degree of fulfillment
of customer requirements by a CBR system.

6.1 Customer Requirements and Performance Measures

If we consider customer requirements, we observe the following correspondence to
performance measures:

a) The first customer requirement corresponds to coverage. Customers want an answer
to their query, and if a CBR system covers a query it is able to provide an answer,
even if we demand a minimum similarity between classifying cases and queries as
many CBR systems do.

b) The second customer requirement corresponds to correct coverage or accuracy. Ob-
viously, customers want correct answers; if a CBR system correctly covers a query,
it provides a solution that is correct, if the case base does not contain a more similar
case in comparison to the query that results in an incorrect solution. Therefore, it
is important to additionally measure accuracy. The higher the accuracy of the CBR
system is, the more correct solutions it really provides, no matter if the similarity
between cases and queries is high or low.

c) The third customer requirement corresponds to retrieval time, and hence to storage
space. Customers want fast answers, and if retrieval time is short, answers are fast.
There is always a trade–off between coverage, correctness, and speed. A customer
is probably willing to wait longer for a correct answer rather than having a wrong
solution fast.

d) The fourth customer requirement corresponds to confidence. Customers are inter-
ested in confident answers. For example, in a help–desk setting customers want to
know how likely the provided solution is going to be the correct solution before
they invest time and possibly money in realizing the suggested solution.

According to these relations, we are able to measure customer requirements and the
degree of fulfillment for any specific CBR system by analyzing the respective perfor-
mance measures. However, these performance measures rely on characteristics of re-
trieval and an a–priori knowledge on expected queries. Retrieval is costly, and a–priori
knowledge on expected queries is usually not available in real-world applications.

Therefore, we aim at other criteria that we are able to measure without using the
CBR system and testing its retrieval results, and without knowing anything about ex-
pected queries in advance. In the following, we argue that it is possible to approximate
some expectations on relative performance (with respect to the previously defined per-
formance measures) by analyzing the case properties within a case base. In addition, we
also aim at rules that indicate how the performance measures change over time when
we apply restore operations to modify cases in the case base for maintenance purposes.

6.2 Performance Measures and Case Properties

Ideally, we want theoretical relations between performance measures and case proper-
ties. For example, if we take into account coverage as the performance measure, unique-
ness as the case property, and assume a1–nearest–neighbor algorithm for retrieval, we
theoretically know that conflicts that violate uniqueness do not influence coverage. If
there exists a case that covers a query, it does not matter if this case exists more than
once, and similarly, if there does not exist any case that covers a query, the situation
does not change if we have cases multiple times. Likewise, it does not make any dif-
ference in terms of coverage if we utilize restore operations to remove conflicts that
contradict uniqueness.

However, as extensive theoretical analyzes that we conducted show, relations be-
tween performance measures and case properties are not always that clear, and more-
over these relations are usually not independent of other assumptions, for example, on
similarities between cases and queries. In order to exemplify the relatively complex the-
oretical relation between performance measures and case properties, we again consider
coverage.

Performance Measures and Similarity First of all, if we take coverage, when does
coverage change? The coverage of a setT ′ of cases changes if the number of queries
thatT ′ covers changes. This number again changes if eitherT ′ after modification by
maintenance operators does not cover a queryq anymore, or ifT ′ then additionally
covers an extra queryq′ which it did not cover before. In terms of the definition of
coverage, we reveal the following conditions:

(i) PV (T) > PV (T ′)
⇐⇒ ∃q ∈ Q : ∃t ∈ T : sim(tp, qp) ≥ τ ∧ @t′ ∈ T ′ : sim(t′p, qp) ≥ τ

⇐⇒ ∃q ∈ Q : ∃t ∈ T : sim(tp, qp) ≥ τ ∧ ∀t′ ∈ T ′ : sim(t′p, qp) < τ .
(ii) PV (T) < PV (T ′)

⇐⇒ ∃q ∈ Q : @t ∈ T : sim(tp, qp) ≥ τ ∧ ∃t′ ∈ T ′ : sim(t′p, qp) ≥ τ

⇐⇒ ∃q ∈ Q : ∀t ∈ T : sim(tp, qp) < τ ∧ ∃t′ ∈ T ′ : sim(t′p, qp) ≥ τ .

Both conditions mean if we modify a case by any restore operator and this modifi-
cation in turn changes the coverage of the case base, then the modified casebeforeits
modification is the only case which coversq for the first condition (if it is not, there
exists still another case which coversq), and the modified caseafter its modification is
the only case which coversq for the second condition, respectively. We further assume
that one of these conditions is true subsequently.6

If the modified case is the only case that is responsible for changes of coverage, this
change is only possible if modification changes the similarity between the case and the
respective query; for the first condition, this modification must decrease this similarity,
for the second condition, it must increase the similarity.

6 Otherwise, relations have to consider more cases and the relation of similarities between those
cases, the modified case, and queries.

Performance Measures and Restore OperatorsIf we now assume that we are only
interested in positive effects of maintenance in terms of the performance measures, we
are able to restrict further analyzes to the second condition. When does modification
increase similarity between a case and a query? For modification, we consider restore
operatorsremove , specialize , generalize , cross , andjoin [5]. We neither
take into accountadjust andalter since both operators are only concatenations
of specialize andgeneralize , nor abstract andcombine since these two
operators state additional assumptions on representation and retrieval which we can not
expect in general diagnosis applications. The following definition9 recapitulates the
restore operators which we consider here from earlier publications for completeness.

Definition 9 (Restore Operators).AssumeC⊆ is the set of all subsets ofC, G ⊆ C,
andci = (pi, si), ci′ = (pi′ , si′) ∈ G.

a) remove : C⊆ × C 7→ C⊆, remove (G, ci) := G \ {ci}
b) Assumepi ∩ Vj = ∅ andvjk ∈ Vj .

specialize : C × V 7→ C, specialize (ci, vjk) := (pi ∪ {vjk}, si)
c) Assumepi ∩ Vj = {vjk}.

generalize : C × V 7→ C, generalize (ci, vjk) := (pi \ {vjk}, si)
d) Assume1 ≤ ∆ ∈ N, |pi ∩ pi′ | + ∆ = Ni = Ni′ or pi (pi′ or pi′ (pi, and

si = si′ .
cross : C × C 7→ C, cross (ci, ci′) := (pi ∩ pi′ , si)

e) Assume1 ≤ ∆ ∈ N, |pi ∩ pi′ |+ ∆ = Ni = Ni′ and∀aj ∈ A : |[(pi ∪ pi′) \ (pi ∩
pi′)] ∩ Vj | ≤ 1 or pi (pi′ or pi′ (pi, andsi = si′ .
join : C × C 7→ C, join (ci, ci′) := (pi ∪ pi′ , si)

Theremove operator is certainly the strongest operation that maintenance allows.
However,remove does not directly influence coverage in terms of changing similar-
ities between the modified case and queries, since the modified case no longer exists
after its removal. Nonetheless, simple analyzes show that removal of a case always
results in the same or lower coverage but it does not positively influence coverage at all.

Now, assume two casest, t′ ∈ T , a queryq ∈ Q, andw← = 0, w→ = 1, and
w− = 1 for the definition of similarity measuresim (see definition3). If we consider
specialize , generalize , cross , andjoin , we observe the following charac-
teristics:

– sim(specialize(t, vjk), q) = sim(t, q) if Vj ∩ q = vjk,7

– sim(specialize(t, vjk), q) = sim(t, q)−N−1 if Vj ∩ q = vjk′ 6= vjk, and
– sim(specialize(t, vjk), q) = sim(t, q)−N−1 if Vj ∩ q = ∅.

All in all, sim(specialize(t, vjk), q) ≤ sim(t, q).
– sim(generalize(t, vjk), q) = sim(t, q) if Vj ∩ q = vjk,
– sim(generalize(t, vjk), q) = sim(t, q) + N−1 if Vj ∩ q = vjk′ 6= vjk, and
– sim(generalize(t, vjk), q) = sim(t, q) + N−1 if Vj ∩ q = ∅.

All in all, sim(generalize(t, vjk), q) ≥ sim(t, q).
– sim(cross(t, t′), q) = sim(t, q) = sim(t′, q) if t = t′, and

7 For simplicity, we identify sets with only a single element with this element, i.e.,{x} = x.

– sim(cross(t, t′), q) = sim(t, q) if t ⊆ t′ (similar for t′).
Other general relations are not possible since similarity can increase and decrease
depending on the specific relation between values of cases and query.

– sim(join(t, t′), q) = sim(t, q) = sim(t′, q) if t = t′, and
– sim(join(t, t′), q) = sim(t′, q) if t ⊆ t′ (similar for t).

All in all, sim(join(t, t′), q) ≤ sim(t, q) andsim(join(t, t′), q) ≤ sim(t′, q).

In conclusion, if we are interested in positive effects on coverage by maintenance
using the specified restore operations, we conclude that the only operator which ensures
— without additional assumptions — that the similarity does not decrease isgener-
alize . Hence, if we want to positively influence coverage by maintenance, it is wise
to testgeneralize as the first modification operator.

6.3 Further Analyzes

For all performance measures beyond coverage which we used as an example here,
similar analyzes are possible, and the results of such analyzes are comparable to those
presented here. In some situations, it is possible to derive general theoretical relations
between case properties, the resulting conflicts between cases, restore operators, and
performance measures. In other situations, it is necessary to state additional assump-
tions, for example, on similarities between cases and queries, to make the analyzes
tractable. We are currently elaborating on such investigations as part of our overall re-
search on maintenance.

An extra type of analysis which we have not yet extensively pushed forward con-
siders relations between the specific type of conflict and changes of the performance
measures if we conduct maintenance using restore operators to modify affected cases.
Again, initial results on these analyzes show that, in some situations, it is possible to de-
rive general heuristics in case of specific conflicts which type of operator is preferable,
and which of the affected cases to modify first, in order to get best results in terms of
performance. However, in other situations, again additional assumptions are necessary
to make these theoretical analyzes feasible.

7 Experimental Evaluation

Up to this point, the theoretical analyzes show that it is hardly possible to infer general
relations between case properties and performance measures for any type of situation
without additional assumptions. In order to further check if conflicts indicate not only
quality problems within the case base but also indirectly demonstrate that performance
measures currently do not yield optimal values, and to see if it is possible to positively
manipulate performance values by modifying cases with restore operations when we
observe violated case properties, we now turn to an experimental evaluation.

7.1 Experimental Set–Up

Figure1 outlines the experimental procedure. For each of the ten different data sets
from the UCI repository, we initially separate the original data set into five folds of 20

Data Set

Training

Set
T

Test

Set
Q

Case

Properties

Restore

Training

Set
T'

1-NN
 Performance

Measures
Benchmark

5-fold X-

validation

- coverage

- accuracy

- time / space

- confidence

- uniqueness

- minimality

- incoherence

- consistency

- remove

- generalize

- specialize

- cross

- join

- similarity

 measure

- attribute

 selection

- value

 selection

80%

20%

Fig. 1. Experimental Procedure

percent of the entire data each. Thereafter, we split the data into a training setT that
consists of four folds and a test setQ that contains the remaining fifth fold. We apply the
case properties uniqueness, minimality, incoherence, and consistency to detect conflicts
between cases which violate these properties. Then, we utilize the restore operators
remove , specialize , generalize , cross , and join separately to maintain
the case base by modifying cases in order to eliminate conflicts. The result of the restore
step forms the modified training setT ′.

Now, we apply a simple1–nearest–neighbor algorithm as the CBR mechanism for
retrieval and classification with similarity measuresim with w← = 0, w→ = 1, w− =
1, andε = 0.05 for local similarity between numeric attributes. Thereafter, we compute
the four performance measuresPV (T ′) with τ = 0.75, P+

A (T ′), PT (T ′), andPC(T ′)
and their positive pendants as the overall results of our experiment. The benchmark for
comparing these results is the application of the same1–nearest–neighbor algorithm
and computation of the performance measures using the original training setT . We
repeat the entire experimental procedure five times, using each of the five folds as the
test set once; hence, we implement a 5–fold cross validation experimental design.

For operatorsgeneralize andspecialize , we conduct the following strategy
to select attributes and values for manipulation. We assess all attributes with informa-
tion gain ratio as if we were estimating the quality of an attribute for creating the first
split in building a decision tree [3]. We then choose the least important attribute accord-
ing to this selection criterion as the attribute for which we eliminate the value in case
of generalize , or identify the most important attribute for which we add a value
for specialize . For the latter operator, we additionally have to decide which value
forms the new value for the selected attribute. Therefore, we assume that the most often
occurring value for the respective attribute for cases with the same class is the most
promising value for our purposes.

7.2 Experimental Results

Table2 shows experimental results for operatorgeneralize in order to eliminate
conflicts that violate one of the case properties uniqueness, minimality, incoherence,

Table 2.Experimental Results

Data Set PV P+
V P+

A PC P+
C

australian 94.6(94.5) 92.0(91.9) 89.4(88.6) 85.9(85.5) 76.7(75.6)
breast-cancer 94.8(94.4) 88.8(88.5) 81.8(80.8) 86.4(85.8) 70.4(69.1)
bridges-version1-ms 81.3(80.3) 60.5(59.5) 66.8(66.8) 83.6(83.5) 55.5(55.4)
bupa 76.5(72.5) 70.1(65.2) 83.5(83.8) 83.9(81.2) 69.0(67.1)
hayes-roth 68.1(68.1) 65.0(55.9) 93.9(84.8) 73.5(73.5) 69.2(61.9)
hepatitis 98.1(98.1) 87.1(87.1) 75.5(75.5) 88.6(88.6) 67.0(67.0)
ionosphere 38.7(38.7) 38.7(38.7) 92.9(92.9) 70.7(70.7) 66.9(66.9)
pima-indians-diabetes 78.9(76.2) 69.9(65.7) 81.9(81.5) 76.7(75.4) 62.5(61.1)
processed-hungarian 94.2(93.5) 89.1(88.1) 86.4(86.1) 83.4(83.2) 72.0(71.6)
voting-records 100.0(100.0) 99.5(99.5) 91.0(91.2) 98.5(98.5) 89.6(89.9)

and consistency in their general similarity–based definition. The table lists five differ-
ent performance criteria: CoveragePV , correct coverageP+

V , accuracyP+
A , confidence

PC , and correct confidenceP+
C . Left–hand of each column, we see results for the mod-

ified case baseT ′ after maintenance, whereas right–hand in brackets we observe the
respective benchmark results for the entire training setT before maintenance. Note, we
do not report onPT in this table, since we only list results for operatorgeneralize
which does not modify the case base size at all.8

For coverage, we perceive that the experimental results exactly fit our expectations
resulting from the theoretical analysis. Coverage as well as correct coverage remain
constant or increase if we applygeneralize as the maintenance operator. This is
coherent with the theoretical analysis that similarities between generalized cases and
queries do not decrease.

For accuracy, maintenance has a positive effect on five data sets, a neutral relation
holds for three data sets, and we see slightly worse results on the remaining two data
sets. Hence, we also infer that maintenance usinggeneralize for cases which violate
the defined case properties yields promising results in terms of the second performance
criterion.

Finally, for confidence, we notice that values again remain constant or increase as
for coverage except for data set voting records and correct confidence. It is interesting
to see that in most cases it looks like accuracy and confidence are highly correlated, i.e.,
both performance measures vary in comparable orders of magnitude. Hence, we tend
to infer that confidence increases when accuracy does; the more correct classifications
a CBR system provides, the more confident it is in its decisions.

All in all, we conclude that the theoretical analyzes give correct hints which operator
to test first for maintenance and optimization of performance, and that the suggested
general case properties and restore operators are a promising instrument to maintain
CBR systems in practical applications when we aim at optimization of performance
criteria that correspond to customer requirements.

8 We refer to [2] for some results onPT andP+
A using operatorremove .

8 Conclusions

In this paper, we presented extensions of our research on case base maintenance. We
discussed several customer requirements and defined different performance criteria that
are equivalent computable measures for these requirements. Since we are not able to
estimate specific values of the performance criteria for any CBR system in advance,
and we are also not able to predict changes in performance if we maintain the case base
using restore operations, we argued that it is possible to estimate values and changes of
performance by considering case properties and their changes after maintenance oper-
ations on the case base.

Theoretical analyzes showed that it is hardly possible to derive general rules for
the relations between customer requirements, performance criteria, and case properties
without making additional assumptions — for example, on the specific similarity mea-
sure used for retrieval — to keep the analyzes feasible. However, initial experimental
results show that application of restore operators indeed positively influences the per-
formance measures, and that the theoretical analyzes provide first hints which operator
is likely to perform best in terms of increasing performance values.

Future research aims at extensions of both, the theoretical analyzes and the experi-
mental studies. The whole research currently offers many parameters to vary, and addi-
tional calibrations for all methods seem to have the potential for further examinations.
For example, we plan to vary the used similarity measure and the various thresholds
such asτ andε, as well as to conduct further experiments with combinations of differ-
ent restore operators. We strongly believe that we are able to derive more heuristics for
appropriate applications of the right restore operators depending on the type of conflicts
and the desired effect in performance.

References

1. Agnar Aamodt and Enric Plaza. Case–based reasoning: Foundational issues, methodological
variations, and system approaches.AI Communications, 7(1):39–59, 1994.

2. Ioannis Iglezakis. The conflict graph for maintaining case–based reasoning systems. In
Proceedings of the 4th International Conference on Case–Based Reasoning, pages 263–275.
Springer–Verlag, 2001.

3. J. Ross Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
4. Thomas Reinartz, Ioannis Iglezakis, and Thomas Roth–Berghofer. On quality measures for

case base maintenance. InProceedings of the 5th European Workshop on Case–Based Rea-
soning, pages 247–259. Springer–Verlag, 2000.

5. Thomas Reinartz, Ioannis Iglezakis, and Thomas Roth–Berghofer. Review and restore for
case–base maintenance.Computational Intelligence: special issue on maintaining CBR sys-
tems, 17(2):214–234, 2001.

6. Barry Smyth and Elizabeth McKenna. Competence guided incremental footprint-based re-
trieval. Knowledge–Based Systems, 14(3):155–161, 2001.

7. Barry Smyth and Elizabeth McKenna. Competence models and the maintenance problem.
Computational Intelligence: special issue on maintaining CBR systems, 17(2):235–249, 2001.

	Relations between Customer Requirements, Performance Measures, and General Case Properties for Case Base Maintenance
	1 Introduction
	2 Customer Requirements
	3 Case Representation and Similarity Measure
	4 Performance Measures
	4.1 Coverage
	4.2 Accuracy
	4.3 Retrieval Time and Storage Space
	4.4 Confidence
	4.5 Related Performance Measures

	5 General Case Properties
	6 On Relations between Customer Requirements, Performance Measures, and General Case Properties
	6.1 Customer Requirements and Performance Measures
	6.2 Performance Measures and Case Properties
	Performance Measures and Similarity
	Performance Measures and Restore Operators

	6.3 Further Analyzes

	7 Experimental Evaluation
	7.1 Experimental Set--Up
	7.2 Experimental Results

	8 Conclusions

